
Sparse Regression as a Sparse Eigenvalue Problem
Baback Moghaddam
Jet Propulsion Laboratory

California Institute of Technology

baback@jpl.nasa.gov

Amit Gruber, Yair Weiss
The Hebrew University

Jerusalem, Israel

{amitg,yweiss}@cs.huji.ac.il

Shai Avidan
Adobe Systems Inc

Newton, MA USA

avidan@adobe.com

Abstract—We extend the l0-norm “subspectral” algorithms for
sparse-LDA [5] and sparse-PCA [6] to general quadratic costs
such as MSE in linear (kernel) regression. The resulting ”Sparse
Least Squares” (SLS) problem is also NP-hard, by way of its
equivalence to a rank-1 sparse eigenvalue problem (e.g., binary
sparse-LDA [7]). Specifically, for a general quadratic cost we
use a highly-efficient technique for direct eigenvalue computa-
tion using partitioned matrix inverses which leads to dramatic
×103 speed-ups over standard eigenvalue decomposition. This
increased efficiency mitigates the O(n4) scaling behaviour that
up to now has limited the previous algorithms’ utility for high-
dimensional learning problems. Moreover, the new computation
prioritizes the role of the less-myopic backward elimination stage
which becomes more efficient than forward selection. Similarly,
branch-and-bound search for Exact Sparse Least Squares (ESLS)
also benefits from partitioned matrix inverse techniques. Our
Greedy Sparse Least Squares (GSLS) generalizes Natarajan’s
algorithm [9] also known as Order-Recursive Matching Pursuit
(ORMP). Specifically, the forward half of GSLS is exactly equiv-
alent to ORMP but more efficient. By including the backward
pass, which only doubles the computation, we can achieve lower
MSE than ORMP. Experimental comparisons to the state-of-
the-art LARS algorithm [3] show forward-GSLS is faster, more
accurate and more flexible in terms of choice of regularization.

I. INTRODUCTION

Consider the general case of a linear system Ax = y with
the solution x̂ = argmin ||Ax − y||2. We embrace all special
cases here (e.g. noisy, noiseless, over/under-determined, etc.).
Typical examples in machine learning and statistics would be

least squares (LS) regression. The m-by-n design matrix A
can be ”short and fat” (m < n) for over-complete dictionaries,
or ”tall and skinny” (m > n) in over-determined systems, or
even square-symmetric as in the case of kernel (nonlinear)

regression problems. We then impose sparsity with a direct
cardinality constraint: card(x̂) = k where k < n. This leads
to the more general sparse quadratic optimization problem:

Sparse MinQuad : min
1

2
xT Q x − bT x + c (1)

subject to card(x) = k

where in this case Q = AT A and b = AT y (with an irrelevant
offset c = yT y/2). Note that any additional regularization term
(e.g., l2 or RKHS norms on x) can be easily absorbed into
this general quadratic form via Q ← Q + τR, with τ as the
regularization parameter and R = In for an l2 ridge penalty,
R = K for a RKHS norm penalty, or R = K−1 which would

be more common in spatial statistics.

Sparse-MinQuad is non-convex, combinatorial and NP-hard.

In fact, at first glance it may appear to require specialized

algorithmic machinery to solve. Yet, at its core, this is a

sparse generalized eigenvalue problem and a rather simple one

at that (with only one finite eigenvalue). This equivalence is
easily seen by Lagrangian reformulation (ignoring sparsity for

the moment) which yields a Generalized Rayleigh Quotient

(GRQ) problem: max (xT P x)/(xT Q x), where P is the

rank-1 outer-product bbT . Specifically, the GRQ’s principal

eigenvector is directly proportional to the LS solution x̂
(modulo a sign ambiguity) and the corresponding eigenvalue

is related to the LS error: ||Ax̂ − y||2 = ||y||2 − λmax(P, Q).
It is important to note that ordinarily there is no big

advantage to reformulating the solution of a linear system (or

quadratic cost functions in general) with a GRQ. In fact, the

spectral formulation is often more costly to solve. However,

the addition of a sparsity constraint reverses this advantage,

making the (sparse) eigenvalue approach not only more in-

formative but also more efficient. Indeed, sparse generalized

EVDs (i.e., a GRQ plus a cardinality constraint) were recently
addressed in [6], [5], where relatively efficient algorithms for

approximate (greedy) and exact (branch-and-bound) solutions
were derived using a ”subspectral” framework, by analyz-

ing the subspectrum of P and Q (i.e., the eigenvalues of
their submatrices). These discrete algorithms were applied to
sparse-PCA and sparse-LDA for feature (variable) selection

with quite promising results (e.g. the greedy algorithm alone
out-performs continuous and convex relaxation techniques).

We should also stress that we are not too concerned here

with the rather special problem of “sparse recovery” where x̂ is
known a priori to be sparse and we ask under what conditions
(on algorithms, the matrix A, and/or noise) can we guarantee
exact recovery of the “true” sparsity pattern. Indeed, in all

our experiments (and the practical learning scenarios which

they typify) we expect the full LS solution to be dense (and
not just because of noise). Therefore, we are more interested

in the resulting economy (of predictions) and/or parsimony (of
models) than in the pursuit (recovery) of any intrinsic sparsity.
We begin by reviewing basic properties of sparse EVDs,

the variational eigenvalue bounds that inform and define their

solutions, and the resulting discrete search algorithms used

in [6], [5]. We then show how to exploit the special rank-1

property of a quadratic cost function to derive highly-efficient

and streamlined algorithms for general-case sparse quadratic

optimization as in Sparse-MinQuad.

II. BACKGROUND

Several new techniques have been recently developed for

sparse spectral decomposition. Zou et al. [13] proposed a
sparse PCA algorithm (called SPCA) using l1-penalized re-
gression on regular PCs. Subsequently, d’Aspremont et al. [2]
relaxed the hard cardinality constraint with a simpler convex
approximation using semi-definite programming (SDP) for

a more ”direct” formulation (called DSPCA). In contrast,

an alternative discrete spectral framework was recently pro-
posed by Moghaddam et al. [6], using variational eigenvalue
bounds on the covariance ”sub-spectrum” derived by the eigen-

value Inclusion Principle. This ”subspectral” view not only
leads to an exact formulation of NP-hard sparse eigenvector

problems but also suggests a simple post-processing step

(”variational renormalization”) which can be used to improve

all continuously-derived solutions. Substantial performance

gains were obtained using a simple greedy search algorithm
(GSPCA) that was also faster than most continuous methods,

albeit for small-scale problems (n < 1000). The subspectral
framework was also extended to supervised discriminant learn-
ing problems via generalized EVDs [5] which effectively sub-
sumes sparse-PCA as a special case of sparse-LDA. In addition

to greedy techniques, exact and optimal subspectral algorithms
based on branch-and-bound search (with spectral bounds) were

also proposed [6], [5]. The computational speedups proposed

in Section IV, though ideal for greedy (sequential) search, also

apply to the index ”pivoting” operations in branch-and-bound.

III. SPARSE GENERALIZED EVD

Given a symmetric matrix pair (P, Q) with Q � 0,
we wish to maximize the generalized Rayleigh quotient

R(x) = (xT P x)/(xT Q x). The optimal solution is of course
the eigenvector corresponding to the maximal eigenvalue of

the matrix Q− 1

2 PQ− 1

2 . Without the sparsity constraint the

GRQ obeys the global bounds λ1(P, Q) ≤ R(x) ≤ λn(P, Q)
where λ’s are ranked in increasing order, thus λmin = λ1 and

λmax = λn. The sparse version of GRQ is obtained by adding
a cardinality-constraint card(x) = k which leads to a non-
convex objective function and the NP-hardness. Note that the

special case of Q = I defaults to sparse-PCA, therefore any
algorithm for sparse-LDA will also solve sparse-PCA.

The key subspectral optimality condition for sparse EVDs

is based on the following key equality

xT P x

xT Q x
=

zT Pk z

zT Qk z
(2)

where z ∈ Rk is the nonzero subvector of x and (Pk, Qk)
are the k × k principal submatrices of (P, Q) obtained by
deleting the rows/columns corresponding to the zero indices

of x. Hence the reduced quadratic form in z is equivalent
to a standard unconstrained GRQ and since this subproblem’s
maximum is λk(Pk, Qk), this must also be the optimal R. This
reveals the true combinatorial nature of sparse EVDs wherein

solving for the optimal solution is inherently a discrete search

for the k indices which maximize λmax of the indexed sub-
problem (Pk, Qk). In fact, continuous optimization techniques

are only useful in yielding a sparsity pattern with which to

solve an unconstrained subproblem in (Pk, Qk). Otherwise,
they are needlessly sub-optimal and must be ”variationally

renormalized” using the above equality. It is shown in [6] that

the ad-hoc method of ”simple thresholding” (ST) — setting
the smallest loadings to zero and renormalizing to unit-norm

— is greatly enhanced by this ”fix.”

A. Generalized Spectral Bounds
The subspectral λmax(Pk, Qk) play a key role in defining
SLDA solutions. But due to their combinatorial numbers, we

would prefer a more concise characterization by the λi(P, Q)
which are more readily available. The global spectrum and all

its subspectra are indeed related.

Theorem 1 Generalized Inclusion Principle [6]. Consider
the symmetric pair P, Q ∈ Sn with generalized spectrum

λi(P, Q). Let (Pk, Qk) be a corresponding pair of k × k
principal submatrices with 1 ≤ k ≤ n, and generalized sub-
spectrum λi(Pk, Qk). Then, for all 1 ≤ i ≤ n

λi(P, Q) ≤ λi(Pk, Qk) ≤ λi+n−k(P, Q) (3)

In other words, the generalized eigenvalues of (P, Q) form
upper and lower bounds for the generalized eigenvalues of all

the principal submatrices (Pk, Qk). Indeed, the subspectrum
of (Pm, Qm) and (Pm+1, Qm+1) interleave or interlace each
other, with the eigenvalues of the larger matrix pair ”bracket-

ing” those of the smaller one. For positive-definite symmetric
matrices (covariances), augmenting Pm to Pm+1 (adding a

new variable) will always expand the spectral range: reducing
λmin and increasing λmax. This monotonicity has important
theoretical and practical consequences for combinatorial opti-

mization.

Since we wish to maximize the GRQ objective in order to

minimize the quadratic in Eq.(1), the relevant inequality in

Eq.(3) is the one with i = k, thus yielding

λk(P, Q) ≤ λmax(Pk, Qk) ≤ λn(P, Q) (4)

This shows that the k-th smallest eigenvalue of (P, Q) is a
lower bound for a GRQ objective with cardinality k. Although
this lower bound is of no use in the rank-1 case being

considered here, since the λk(P, Q) are all zero except for
k = n.
With the discrete approach, branch-and-bound tech-

niques [10] are ideally suited for sparse-LDA. In [5], the

generalized inclusion bounds (mainly the upper bound in
Eq.(4) for subproblems of varying sizes) are used for exact

search (ESLDA) to find globally optimal solutions, albeit for

smaller problems (n < 60) since branch-and-bound can exhibit
exponential worst-case complexity.

Greedy techniques like backward elimination can also
exploit the monotonic nature of nested submatrices and

their ”bracketing” eigenvalues: start with the full index set

I = {1, 2, . . . , n} and sequentially delete the variable j which
yields the maximum λmax(P\j , Q\j) until only k elements
remain. For small cardinalities k � n, the polynomial cost of

backward search makes its forward counterpart forward selec-
tion more attractive (despite it being potentially “myopic”):
start with the null index set I = {} and sequentially add the
variable j which yields the maximum λmax(P+j , Q+j) until
k elements are selected.

Various theoretical performance guarantees exist for greedy

search which recommend its use. For example, in [6] we show

that the GRQ obeys certain ”nesting” bounds on backward

search, where among all the n possible (n − 1)-by-(n − 1)
principal submatrices of the pair (P, Q), obtained by deleting
a single (say j-th) row and column, there is at least one whose
objective value is no less than n−1

n
of λmax(P, Q)

max
j

λmax(P\j , Q\j) ≥
n − 1

n
λmax(P, Q) (5)

This “best-case” nesting bound can be applied recursively in

backward search mode to show, for example, that our greedy

solutions are guaranteed to achieve no less than the fraction

k/n of the initial (global) λmax(P, Q). In actual practice
of course, one captures far more variance than what this

simple linear bound indicates, due to the overly pessimistic

assumptions implicit in the recursion of Eq(5).

The greater efficiency of forward search can be combined

with the greater performance of backward search. The result-

ing bi-directional or ”dual-pass” search was proposed in [6] for
sparse-EVDs: simply pick the better of the 2 solutions found

by forward and backward passes. This strategy has led to very

good results (e.g., out-performing various leading continuous
algorithms for sparse-PCA). A full dual-pass search has the

added benefit of giving near-optimal solutions for all cardinal-
ities (at once), with a complexity that is far less demanding

than finding single k solutions (one at a time).

IV. EFFICIENT EIGENVALUE COMPUTATION

In the general setting of full-rank matrices the subspectral

algorithms for sparse-PCA [6] and sparse-LDA [5] will require

O(k3) EVDs for each subproblem (Pk, Qk) examined in
the discrete search. This computational burden is essentially

unavoidable and leads to the usual difficulties with high-

dimensional problems. Mainly, a full forward pass (for all k)
has O(n4) complexity while a full backward pass has O(n5)
complexity. Unfortunately, this limits the use of the often more

accurate backward search for very large n. Nevertheless, it
is possible to significantly speed-up both the forward and

backward passes (independently) in the special case of a

rank-1 GRQ and do so in such a way that the new backward

search runs even faster than the improved forward search.
As was recently shown in [7], for general quadratic cost

functions such as the LS problem in Eq.(1), the equivalent

GRQ maximization can be made exceedingly efficient, as

the only finite eigenvalue λmax(Pk, Qk) can be computed
in closed-form as bT

k Q−1

k bk. This is due to the rank-1 P
matrix in the GRQ numerator being a simple outer-product

P = bbT . Hence the computational complexity of GSLS

hinges on our ability to invert Qk submatrices ”on-the-fly.”

A naive implementation, even with a Cholesky decomposi-

tion, is still grossly inefficient as Qk and Qk±1 differ by

a single row/column. Therefore, partitioned matrix inverse

techniques [4] using simple rank-1 updates for the required

Q−1

k are highly recommended. The implementation details are

given in the APPENDIX.

Moreover, by computing the increments of change in the
GRQ (instead of final values), intermediate terms (matrix-

vector byproducts) will cancel, leading to an essentially ”loop-

free” array computation over the available indices being con-

sidered for inclusion/deletion. Consequently, these optimized

algorithms offer a significant speed-up (e.g., by several orders
of magnitude). This allows subspectral algorithms to be used

in a much wider range of optimization problems.

For example, a full (dual-pass) run of the algorithm in [5]

for a matrix of size n = 1024, using ”on-the-fly” Cholesky
computation of λmax(Pk, Qk), takes approximately 12 hours
(in Matlab 7.2 on a 3.2GHz P4) where 80% of the cputime

is taken up by the backward pass. In stark contrast, using our
rank-1 updates on partitioned inverses requires only 2 minutes,

where the backward pass now takes up only 40% of the total

cputime (due to its simpler rank-1 updates, see APPENDIX).

This is a speed-up factor of 340. For even larger matrices

(n > 2000) the cputimes were ×103 faster than the default

eigenvalue decomposition. For example, with n = 2048 the
original algorithm required nearly 2 weeks of cputime whereas

our optimized version required just 20 minutes, and with its

backward search using only 1/3 of the total cputime.

V. EXPERIMENTS

We now demonstrate the efficacy of the GSLS algorithm for

solving different types of sparse regression problems (both

primal and dual) using several well-known ML benchmark

datasets. We will demonstrate not only the speed advantages

(compared to ORMP) but also the quality of solutions (com-

pared to LARS) obtained in both training (optimization) and

testing (prediction on held-out data).

A. Comparisons to ORMP
We first compare the forward stage of our GSLS to

Natarajan’s algorithm (ORMP). Since they are exactly equiv-

alent we focus on the running times for various (n, k). For
ORMP we use the standard Natarjan algorithm as detailed

in Nair et al. [8], but optimized for Matlab (e.g. minimizing
for-loops and maximizing array computations as much as

possible).

In kernel regression experiments (with a square-symmetric

A = K) we included the cputime for GSLS’s pre-computation
of Q = KT K and b = KT y. The total running times for
Natarjan/ORMP and GSLS were averaged for different (n, k)
and were used to compute speed-up factors (in favour of

GSLS) shown in Table IV. Forward GSLS is between

×3 to ×15 faster than ORMP. Although not all (n, k) values
for this table are typical of a sparse model (with k � n), it
is instructive to see how the computational complexity of the

two algorithms scales for ”not-so-sparse” cases.

k = 4 8 16 32 64 128 256 512

n = 512 4.6 8.2 9.1 9.9 9.5 6.9 4.0 1.9
1024 2.6 5.1 8.9 12.9 15.4 13.3 8.5 4.0
2048 1.5 3.2 6.1 10.9 16.8 19.1 14.5 7.3
4096 0.9 1.8 3.5 6.8 12.5 19.2 20.4 12.8
5120 0.7 1.5 3.0 5.9 11.2 18.5 22.5 15.6

TABLE I

SPEED ADVANTAGE OF FORWARD GSLS COMPARED TO NATARAJAN’S (ORMP) FOR DIFFERENT n AND k.

THE CPUTIMES FOR GSLS INCLUDE THE PRE-COMPUTATION OF Q = AT A AND b = AT y .

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

500

1000

1500

2000

2500

3000

size (n)

cp
ut

im
e

 (s
ec

s)

ORMP on (A,y)
f−GSLS on (Q,b)
(Q,b) pre−comp

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10−1

100

101

102

103

104

size (n)

cp
ut

im
e

 (s
ec

s)

ORMP on (A,y)
f−GSLS on (Q,b)
(Q,b) pre−comp

(a) (b)

Fig. 1. Total running times for Natarajan (ORMP) and forward-GSLS at fixed sparsity (k = n/10) vs. the matrix size n on (a) linear and
(b) log scales. Times for GSLS’s pre-computation of (Q, b) are shown in dashed.

A more realistic scenario would be to fix the sparsity (e.g.
to 10% ”diversity”) and then increase n. This is illustrated in
Figure 1 which plots the running times for the two algorithms

for increasing n with fixed k = n/10. Forward GSLS is now
more than ×10 faster than ORMP. Furthermore, the cost of
pre-computing (Q, b) is quite negligible, taking up less than
10% of the total cputime.

B. Comparisons to LARS
We next compare our GSLS algorithm to the current state-

of-the-art algorithm LARS for Least Angle Regression [3] in
various sparse regression settings (subset selection). For this,

we use the LARS-EN Matlab Toolbox of [12] which is

closely based on the original R/S-plus LARS toolbox. All

computations were carried out in Matlab 7.2 on a 3.2GHz

Pentium 4.

1) Sparse Kernel Regression on Boston Housing Data:
We start with sparse kernel regression (basis selection) with

the Boston Housing dataset, using the standard train/test split

of 455/51 examples. We first fit a squared-exponential kernel

to the training set using the marginal likelihood optimization

of a full (non-sparse) model using the GPML toolbox of

Rasmussen & Williams [11]. The 3 hyperparameters (signal

variance, kernel width and noise variance) were then used to

define the kernel function for both training and prediction.

The LS solution of y = Kx was then “sparsified” using a

full (dual) pass of GSLS, with Q = KT K and b = KT y , to
find subsets of all cardinalities, and then compared to a full

forward pass of LARS.

Note that as this is a dual or kernel regression problem,
the sparsity pattern of x̂ will identify the reduced “active set”
of training data and not the original variables. The non-zero
elements of x̂ are equivalent to x̂s = Ks \ y where Ks is

the subset of k columns from the training set kernel matrix.
The standard method for making predictions on a new input is

to simply compute y∗ = kT
∗ x̂s were k∗ is the k-dimensional

vector of active set kernel functions and x̂s is the non-zero

subvector of x̂.

For this moderately-sized problem (n = 455) the total run-
ning times of GSLS, including the (Q, b) pre-computation,
were quite negligible using the inverse partitioned matrix

updates: 1.5 secs for forward search and 1.3 secs for backward

search. In sharp contrast, a Cholesky decomposition for the

eigenvalue computation gave forward and backward running

times of 258 secs and 920 secs, respectively. This repre-

sents 2-3 orders of magnitude speedups using the improved

GSLS algorithm. Furthermore, the partitioned matrix inverse

techniques lead to a backward elimination stage which is

comparable in speed (often faster) than forward selection. This

0 50 100 150 200 250 300 350 400 450
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

subset size (k)

M
ea

n−
S

qu
ar

e−
E

rro
r

LARS (original)
LARS ("fixed")
f−GSLS
b−GSLS

0 50 100 150

0.01

0.015

0.02

0.025

0.03

0.035

0.04

subset size (k)

M
ea

n−
S

qu
ar

e−
E

rro
r

LARS (original)
LARS ("fixed")
f−GSLS
b−GSLS

(a) (b)

Fig. 2. Sparse kernel regression on Boston Housing data: MSE on training set (a) and test set (b) v.s. sparsity (k). Subsets and coefficients
found by LARS, forward-GSLS (same as ORMP) and backward-GSLS.

0 2 4 6 8 10 12 14 16 18 20

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

subset size (k)

M
ea

n−
S

qu
ar

e−
E

rro
r

LARS (original)
LARS ("fixed")
f−GSLS
b−GSLS
Optimal (BnB)

0 2 4 6 8 10 12 14 16 18 20

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

subset size (k)

M
ea

n−
S

qu
ar

e−
E

rro
r

LARS (original)
LARS ("fixed")
f−GSLS
b−GSLS
Optimal (BnB)

(a) (b)

Fig. 3. Sparse regression on SARCOS data: MSE on training set (a) and test set (b) v.s. sparsity (k). Subsets and coefficients found by
LARS, forward-GSLS (ORMP), backward-GSLS, and ESLS (Branch-and-Bound).

is significant, since the quality of sparse solutions found by

backward elimination is generally superior to those found by

forward selection. The running time for LARS was 4.2 secs

(or roughly ×3 slower than GSLS).

Figure 2(a) shows the training set MSE for the best subsets

found by GSLS and LARS. For the latter, we use both the

original coefficients and their “re-solved” versions, following

the “variational renormalization” suggested in [6]. This “fix”

corresponds to using the optimal LS coefficients after the
sparsity pattern has been found and will naturally improve

the fit (optimize the objective). However, this is not always

recommended for making predictions due to the risk of over-
fitting. Figure 2(a) also shows that for k > 20 backward-GSLS
has a lower MSE than its forward counterpart, confirming its

”less myopic” tendency for subset selection. Since forward-

GSLS is equivalent to Natarajan’s (ORMP), this example

demonstrates the potential advantage of ”dual-pass” GSLS

over Orthogonal Matching Pursuit, both in terms of speed and

quality.

The LARS training set error in Figure 2(a) reflects the

algorithm’s conservative selection strategy: picking different

indices than ORMP and not fully committing to their optimal

LS coefficients. Nevertheless, optimizing LARS’s coefficients

after the fact (with the “fix”) can often be a useful compromise
(keeping the same variables but modifying their weights). This

can be seen in the predictions on the held-out test set in

Figure 2(b), where except for a small range of cardinalities

the “fix” does in fact improve LARS’s predictions. But overall,

0 5 10 15 20 25 30
750

800

850

900

950

1000

1050

1100

1150

subset size (k)

M
ea

n−
S

qu
ar

e−
E

rro
r

LARS (original)
LARS ("fixed")
f−GSLS
b−GSLS

0 5 10 15 20 25 30
950

1000

1050

1100

1150

1200

1250

1300

1350

subset size (k)

M
ea

n−
S

qu
ar

e−
E

rro
r

LARS (original)
f−GSLS
f−GSLS + ridge

(a) (b)

Fig. 4. Sparse regression on Wisconsin BC data: MSE on training set (a) and test set (b) v.s. sparsity (k). Subsets and coefficients found by
LARS and forward-GSLS with (solid blue) and without (dashed blue) a ridge penalty term (R = I).

forward-GSLS is clearly making better predictions than LARS

on this dataset. Moreover, GSLS is faster than LARS even after

including the backward pass, and the intersection of the two

passes yields better (non-nested) subsets.

2) Sparse Regression for SARCOS Inverse-Kinematics
Data: We next compare GSLS and LARS for predict-
ing torques in the robot inverse-kinematics model SARCOS

dataset from [11]. Here we use the 21-dimensional inputs

(positions, velocities and accelerations for 7 joints) to predict

input torques for the 6th joint (as this seemed to be the more

difficult of the 7 torques). The 40k training set measurements

densely sample the joint state-space, hence we would expect

the prediction performance (on 4k measurements) to corre-

spond fairly well with the training set performance. This is

confirmed by the results shown in Figure 3 in which we

also show the globally optimal subsets found by ESLS us-

ing branch-and-bound. For this small-scale problem (n = 21)
GSLS finds the optimal subsets for most k. In fact, judging
by the “fixed” LARS curve in Figure 3(a), LARS does in fact

find the optimal subsets in few cases (k = 2, 6, 10).

3) Sparse Regression for Wisconsin Breast Cancer Data:
Finally, we use the Wisconsin Breast Cancer dataset (from

the UCI ML Repository) to predict the “time-to-recurrence”

variable by regressing on the other 32 covariates. The 194

cases were randomly split into equal train/test partitions of

size 97. Due to the small size of the training set and the rela-

tively non-trivial task of predicting this particular “outcome”

variable, we should expect some over-fitting, leading to poor

predictions. This is confirmed by the results shown in Figure 4

where for clarity we have omitted the curves for backward-

GSLS and “fixed” LARS in Figure 4(b), neither of which

does substantially better than their alternatives. We see that

despite its low MSE at first (k < 10) forward-GSLS eventually
leads to poor predictions for larger k, especially compared to

LARS which shows better generalization. Of course, this is

not unexpected, as doing better in the optimization task in Fig-

ure 4(a) is no guarantee of doing better in the prediction task in

Figure 4(b). But as mentioned in the introduction we can guard

against over-fitting by adding a ridge penalty term to the GSLS

objective with Q ← Q + τR (with R = I). Figure 4(b) shows
the resulting penalized forward-GSLS doing quite well, even
better than LARS. This demonstrates the greater flexibility (if

not superiority) of GSLS compared to LARS, since we have

the freedom to control not only the amount of shrinkage (with
τ) but also the type of regularization (with R), hence being
able to implement a variety (or even mixture) of ridge/RKHS
penalties and arbitrary Gaussian priors on x.

VI. DISCUSSION

We have shown that the sparse LS solution of y = Ax
is equivalent to a rank-1 subspectral optimization problem

(i.e. a sparse generalized EVD), which can also be used to
solve a general-case sparse quadratic problem such as Sparse-

MinQuad in Eq.(1). We argued that the alternative subspectral

approach is more illuminating (given the variational bounds in

Theorem 1) and leads to more exact (well-defined) solutions

by way of eigenvalue subproblems (in contrast to l1 regular-
ized continuous techniques like Basis Pursuit [1] which solve

a convex approximation of the problem).

ORMP spends a large portion of its cputime projecting

residuals on the columns of A and then renormalizing (or-
thogonalizing) them. Despite this, ORMP runs faster than

the original subspectral algorithm in [5] which used standard

eigenvalue computation for λmax(Pk, Qk). Our inverse parti-
tioned matrix version leads to dramatic ×103 speedups which

subsequently make GSLS ×10 more efficient than ORMP.

Using a dual-pass search, GSLS can also out-perform
ORMP in terms of quality as shown in Figure 2(a) for example.

For finding solutions at all cardinalities, the dual-pass GSLS is

still more efficient than a forward-only ORMP, especially for
large n. Indeed, in such cases GSLS’s backward pass is more
efficient than the forward by virtue of the partitioned matrix

inverse implementation. The ability to surpass ORMP in terms

of both quality and speed is significant as this algorithm is
often viewed as the ”gold standard” in the field, and since

any improvements or enhancements to it are typically made

by sacrificing quality for speed (see discussions in [8]).

Sparse quadratic optimization problems find applications in

diverse fields. In fact, a rather wide range of sparse estimation

and learning problems can be reduced to Equation 1, using

the appropriate (Q, b). In the sparse regression setting (starting
from y = Ax) we showed that the pre-requisite computation
of (Q, b) — something that is not required by ORMP — was
in fact quite negligible (requiring less than 10% of the total

cputime). Of course, if A is highly over-complete (m � n)
and n very large, then the memory storage of Q may become
costly. In such cases ORMP may be preferred, as it works

with (overwrites) the same A matrix, thus requiring O(nm)
storage as opposed to O(n2) with GSLS. Nevertheless, many
optimization problems come with (Q, b) already defined, in
which case ORMP (or LARS) is of no direct use in solving

them. For this more general class of sparse quadratic opti-

mization problems our GSLS algorithm can be put to good

practical use.

Compared to LARS, ORMP on (A, y) can be too aggres-
sive (“too greedy”) [3]. The same criticism applies to our

equivalent forward-GSLS. However, in addition to being ×10
faster than ORMP (and ×3 faster than LARS) we can in fact
achieve better predictions by simply adding different types of

regularization to forward-GSLS using (Q, b), for example the
ridge penalty in Figure 4(b). In contrast, it is less clear how

LARS could implement arbitrary forms of regularization, other

than its own “built-in” conservative (“half-angle”) steps.

Furthermore, backward-GSLS is often superior to the for-
ward selection of ORMP and LARS and it can be readily in-

corporated into dual-GSLS (with less than twice the cputime).

In fact, due to the partitioned matrix updates, backward-

GSLS is significantly faster than LARS for ∼ 103 variables,

including the pre-computation of (Q, b) — e.g., in tests with
n = 4000, LARS took 11.6 hours, forward-GSLS 3.2 hours
(×4 faster) and backward-GSLS only 0.65 hours (×18 faster).
Moreover, GSLS can potentially get lower errors (in both

optimization and prediction) and provide variable subsets that

are not necessarily nested.

Finally, the efficient eigenvalue computations in Section IV

(detailed in the APPENDIX below) can also be applied to

binary (2-class) sparse-LDA and can thus be used for the
GSLDA algorithm in [5], with Q as the within-class covari-
ance matrix and b as the difference of class means. In fact,
the partitioned matrix computations used here for regression

problems defined by (A, y) were first derived for speeding-up
binary classification problems given (Q, b) for sparse-LDA [7].

ACKNOWLEDGMENTS

This research was conducted at the Jet Propulsion

Laboratory, California Institute of Technology, under contract

with the National Aeronautics and Space Administration.

REFERENCES

[1] S. Chen, D. L. Donoho, and M. A. Saunders. Atomic Decomposition
by Basis Pursuit. SIAM Journal on Scientific Computing, 20(1):33–61,
1999.

[2] A. d’Aspremont, L. El Ghaoui, M. I. Jordan, and G. R. G. Lanckriet.
A Direct Formulation for Sparse PCA using Semidefinite Programming.
In Neural Information Processing Systems 17. 2004.

[3] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least Angle
Regression. Annals of Statistics, 32(2):407–499, 2004.

[4] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins
Press, 1989.

[5] B. Moghaddam, Y. Weiss, and S. Avidan. Generalized Spectral Bounds
for Sparse LDA. In International Conference on Machine Learning.
ICML’06, June 2006.

[6] B. Moghaddam, Y. Weiss, and S. Avidan. Spectral Bounds for Sparse
PCA: Exact & Greedy Algorithms. In Neural Information Processing
Systems 18. 2006.

[7] B. Moghaddam, Y. Weiss, and S. Avidan. Fast Pixel/Part Selection with
Sparse Eigenvectors. In International Conference on Computer Vision.
ICCV’07, Rio de Janeiro, Brazil, October 2007.

[8] P. B. Nair, A. Choudhury, and A. J. Keane. Some Greedy Learning Al-
gorithms for Sparse Regression and Classification with Mercer Kernels.
Journal of Machine Learning Research, 3:781–801, 2002.

[9] B. K. Natarajan. Sparse Approximate Solutions to Linear Systems. SIAM
Journal of Computing, 25(2):227–234, 1995.

[10] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial
Optimization. John Wiley, New York, 1988.

[11] C. E. Rasmussen and C. K. I. Williams.
http://guassianprocesses.org/gpml/code.

[12] K. Sjöstrand. Matlab implementation of LASSO, LARS, the Elastic
Net and SPCA. Informatics and Mathematical Modelling, Technical
University of Denmark (DTU), 2005.

[13] H. Zou, T. Hastie, and R. Tibshirani. Sparse Principal Component
Analysis. Journal of Computational and Graphical Statistics, 15(2),
2003.

APPENDIX

For forward greedy search, let s be the current subset of k
indices and t = s ∪ i for a candidate i
∈ s. Given the current
inverse Q−1

ss , the new augmented inverse is

Q−1
tt =

[
Q−1

ss + riviv
T
i −rivi

−riv
T
i ri

]

where vi = Q−1
ss Qsi with (si) indexing the rows in s and the

i-th column of Q and the scalar ri = 1/(Qii − QT
sivi). The

new candidate GRQ objective is λmax(btb
T
t , Qt) = bT

t Q−1
tt bt.

If we expand the expression for the incremental change
Δi = λmax(btb

T
t , Qt) − λmax(bsb

T
s , Qs) intermediate terms

will cancel, leading to a (loop-free) Matlab array computation
for Δ.
For backward greedy search (going from the index set t
down to s), by partitioning the current inverse as follows

Q−1
tt =

[
Uss ui

uT
i zi

]

a simpler rank-1 update results: Q−1
ss = Uss − uiu

T
i /zi. Once

again, by solving for the increments Δi, many unnecessary

calculations can be avoided. This backward computation is

now even more efficient than the forward one, since ”growing”

an inverse is harder than ”shrinking” it.

